Elements of

Seventh Edition

Chapter 9

Population Growth

Lecture prepared by Aimee C. Wyrick

Thomas M. Smith Robert Leo Smith

Chapter 10 Population Growth

- Population growth refers to how the number of individuals in a population increases or decreases with time
 - Individuals added via birth and **immigration**
 - Individuals removed via death and **emigration**
- Immigration and emigration occur in open populations but not in closed populations

- A (closed) population of a freshwater hydra
 - Will increase as a result of new "births" (budding, a form of asexual reproduction)
 - Will decrease as a result of some hydra death
- Birth and death are continuous
 - *b* = the proportion of hydra producing a new individual per unit time
 - *d* = the proportion of hydra dying

- Population size at a particular time = N(t)
- The number of hydra reproducing [B(t)] or dying [D(t)] over a particular time period (Δ t) can be calculated

$$-B(t) = bN(t)\Delta t$$

 $-D(t) = dN(t)\Delta t$

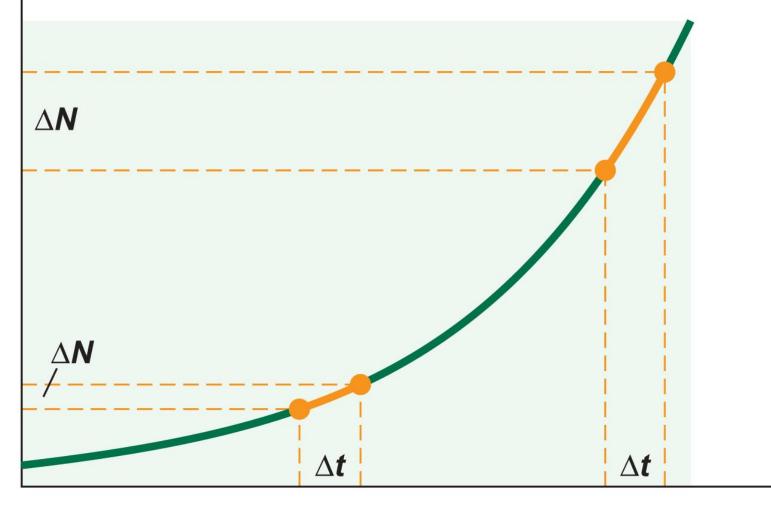
• The population size (*N*) at the next time period $(t + \Delta t)$ would be

 $- \mathcal{N}(t + \Delta t) = \mathcal{N}(t) + \mathcal{B}(t) + \Delta (t)$

- The pattern of population size is a function of time
- Rearranging the equation:

 $-N(t + \Delta t) - N(t)/\Delta t = \Delta N/\Delta t = (b - d)N(t)$

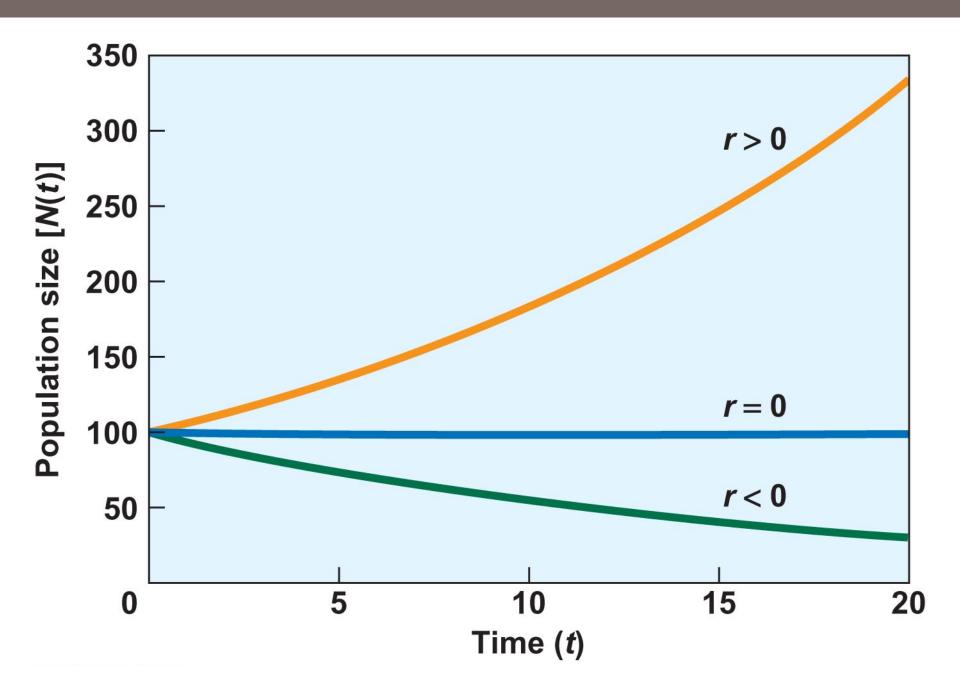
 The relationship (slope) between N(t) and t is nonlinear (curve)



Time (t)

- Rate of change is best described by the derivative of the equation = dN/dt = (b - d)N
 - This derivative expresses that as the Δt approaches zero and the rate of change is instantaneous
- *r* = (*b d*) = instantaneous (per capita) rates of birth and death (growth)
- Exponential population growth = dN/dt = rN

– Predicts the *rate* of population change through time



 An alternate differential equation allows us to predict population size N(t) under conditions of exponential growth

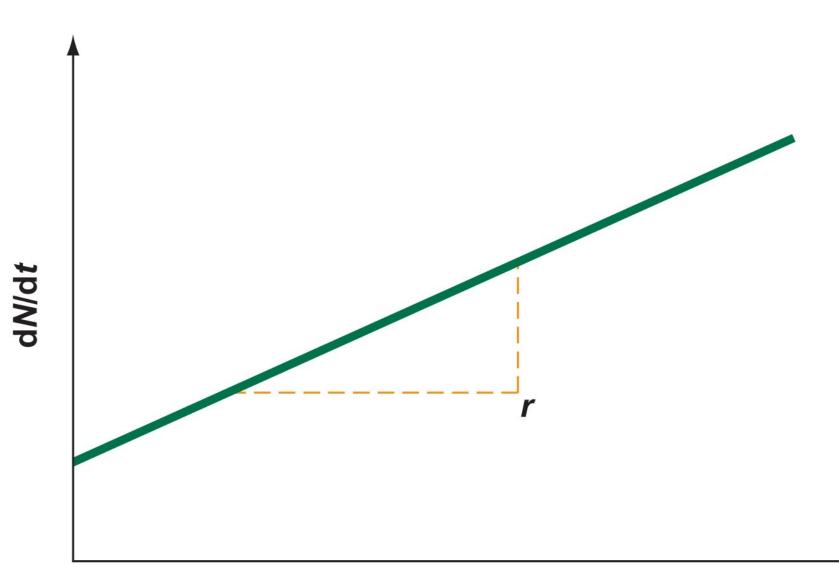
$$- N(t) = N(0)e^{rt}$$

Exponential growth rate

- When r = 0, there is no change in population size
- When r > 0, the population increases exponentially

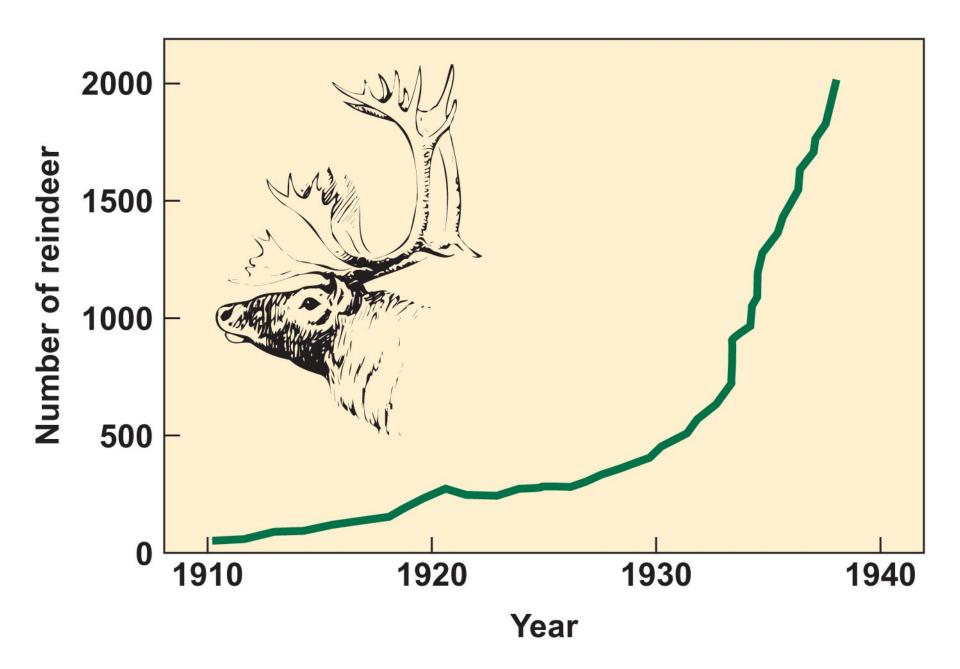
– When r < 0, the population decreases exponentially

 Exponential growth results in a continuously accelerating (or decelerating) rate of population increase (or decrease)

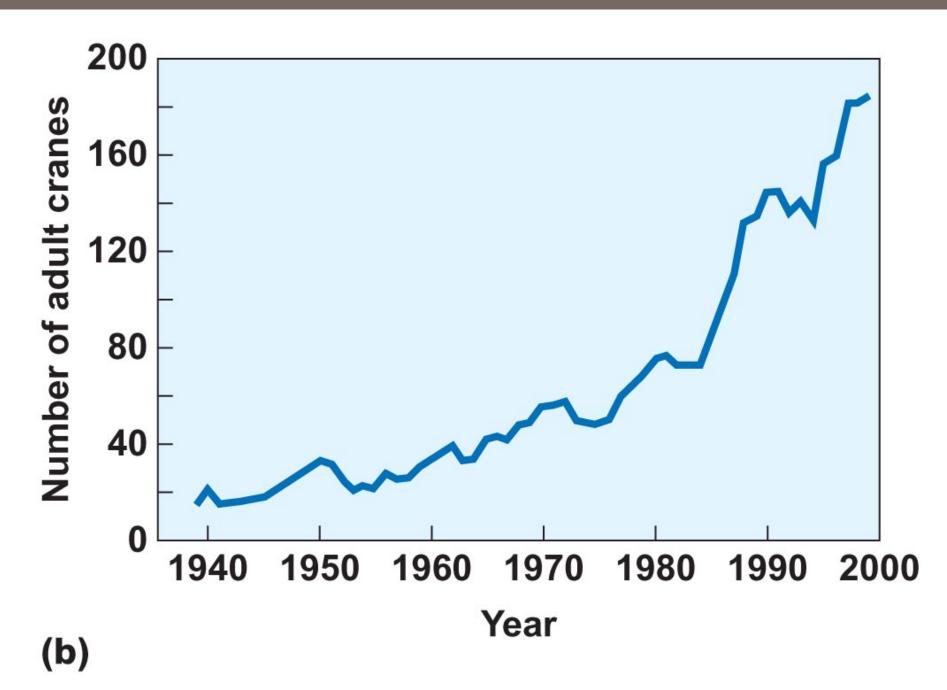


Population size [N(t)]

 Exponential growth rate is characteristic of populations that inhabit favorable conditions at low population densities (e.g., conditions of colonization)

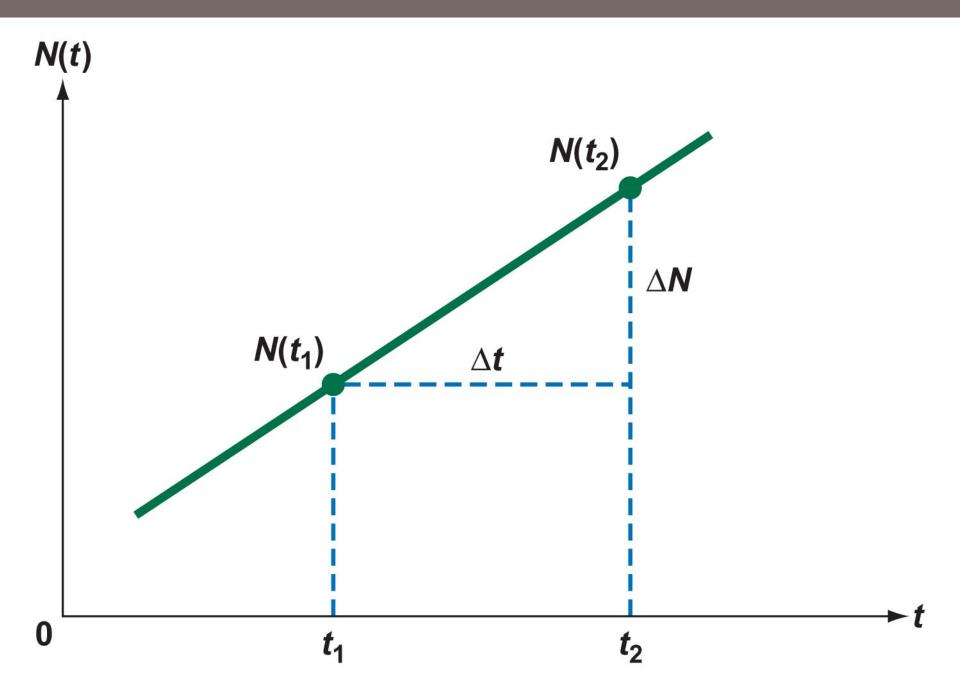


Copyright © 2009 Pearson Education, Inc.



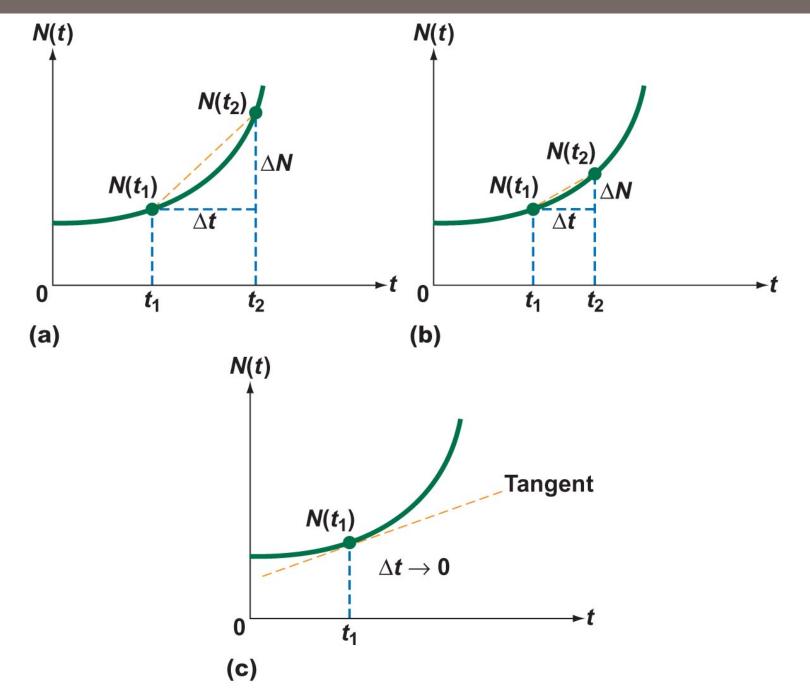
Quantifying Ecology 10.1 Derivatives and Differential Equations

- If N(t) is a linear function of t then the resulting graph will be a straight line
- The rate of population change is given by the slope = s = $\Delta N/\Delta t = N(t_2) N(t_1)/t_2 t_1$
 - The slope of a linear function does not depend on the value of t



Quantifying Ecology 10.1 Derivatives and Differential Equations

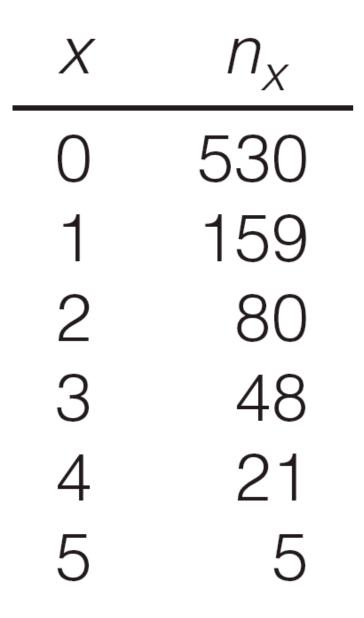
- The slope of a nonlinear function (curve) *does* depend on the value of *t*
 - As t_2 moves closer to t_1 , the slopes vary by smaller and smaller amounts and will eventually approach a constant "limiting value"
- The slope of the function N(t) at t₁ is known as the derivative of N(t) written as dN(t)/dt



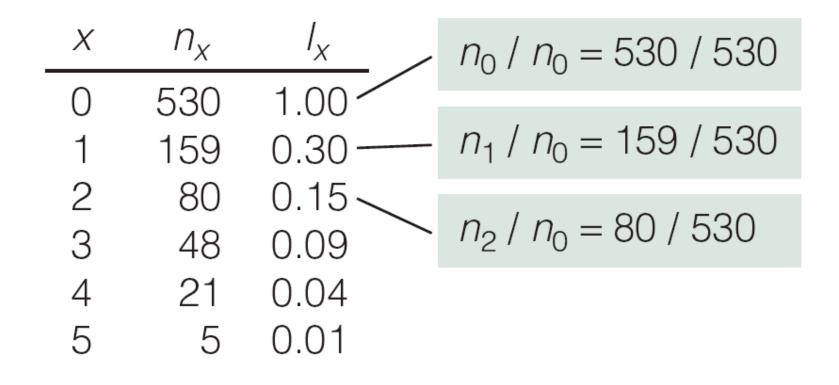
Copyright © 2009 Pearson Education, Inc.

- Change in population abundance through time is a function of the birth and death rates (*r* = per capita growth rate)
- A life table is an age-specific account of mortality
- A cohort is a group of individuals born in the same period of time

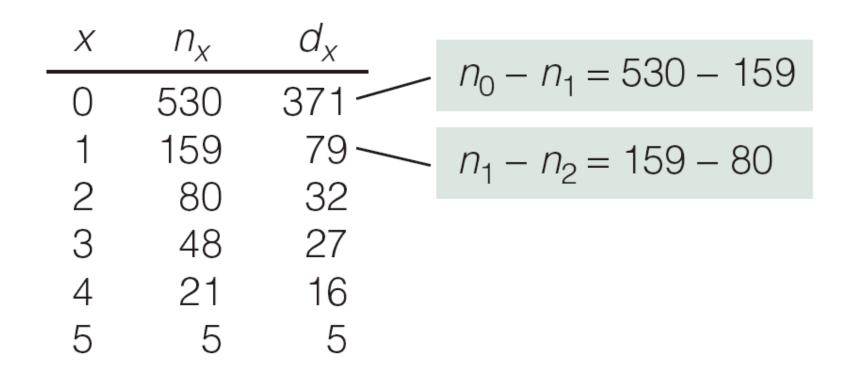
- Life table of gray squirrels (Sciurus carolinensis)
 - x = age classes
 - n_x = the number of individuals from the original cohorts that are alive at the specified age (x)



Life table of grey squirrels (*Sciurus carolinensis*)
 - I_x = the probability at birth of surviving to any given age (x)



- Life table of gray squirrels (Sciurus carolinensis)
 - d_x = age-specific mortality = the difference between the number of individuals alive for any age class (n_x) and the next older age class (n_{x+1})



- Life table of gray squirrels (Sciurus carolinensis)
 - q_x = age-specific mortality rate = the number of individuals that died in a given time interval (d_x) divided by the number alive at the beginning of that interval (n_x)

Х	n_{x}	d_{x}	Q_X	d/p 071/500
0	530	371	0.70	d ₀ / n ₀ = 371 / 530
1	159	79	0.50 —	<i>d</i> ₁ / <i>n</i> ₁ = 79 / 159
2	80	32	0.40	
З	48	27	0.55	
4	21	16	0.75	
5	5	5	1.00	

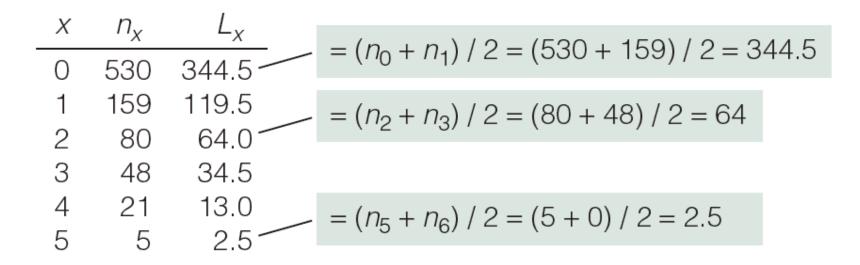
Table 10.1Gray Squirrel Life Table

x	n _x	l_x	d_x	q_x
0	530	1.0	371	0.7
1	159	0.3	79	0.5
2	80	0.15	32	0.4
3	48	0.09	27	0.55
4	21	0.04	16	0.75
5	5	0.01	5	1.0

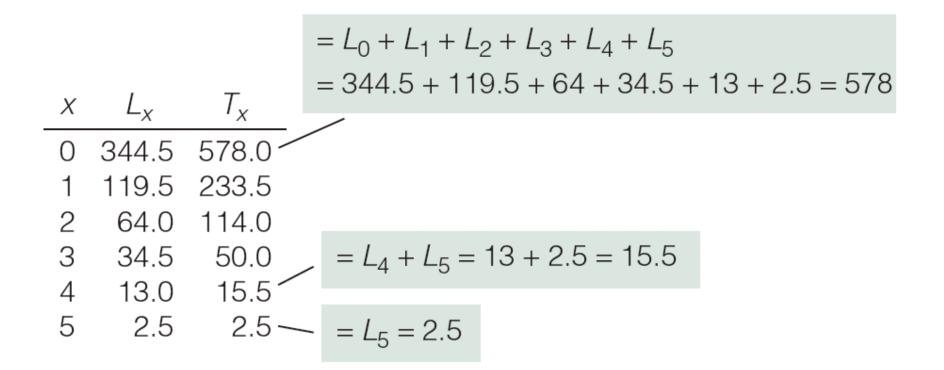
- Life expectancy (e) refers to the average number of years an individual is expected to live from the time of its birth
- Using the life table for the gray squirrel
- *e_x* = age-specific life expectancy = the average number of years that an individual of a given age (*n_x*) is expected to live into the future
 - Several initial calculations are necessary to determine e_x

 Lx = the average number of individuals alive during the age interval x to x + 1.

- Assumes mortality is evenly spread over the year



Tx = the total years lived into the future by individuals of age class *x* in the population



e_x = age-specific life expectancy = the average number of years that an individual of a given age (*n_x*) is expected to live into the future

Х	n_x	T_X	e_{χ}	$= T_0 / n_0 = 578 / 530 = 1.09$
0	530	578.0	1.09	- 10/110 - 576/550 - 1.09
		233.5		$= T_2 / n_2 = 114 / 80 = 1.43$
2	80	114.0	1.43	- 127 112 - 1147 00 - 1.40
З	48	50.0	1.06	
4	21	15.5	0.75	
5	5	2.5	0.50	

- A cohort or dynamic life table is used to track the fate of a group of individuals born at a given time
 - These individuals are followed from birth to death
- A dynamic composite life table constructs a cohort from individuals born over several time periods

- A time-specific life table is a distribution of age classes during a single time period
- Several assumptions are made in this approach
 - Each age class was sampled in proportion to its numbers in the population
 - Age-specific mortality rates (and birthrates) are constant over time

- Many animals (e.g., insects) live only one breeding season. Because generations do not overlap, all individuals belong to the same age class
 - n_x is measured by estimating the population size several times over its annual season

Sparse Gypsy moth

http://en.wikipedia.org/wiki/Lyma ntria_dispar_dispar

Table 10.2Life Table of a Sparse Gypsy MothPopulation in Northeastern Connecticut

x	n_x	l_x	d_x	q_x
Eggs	450	1.000	135	0.300
Instars I–III	315	0.700	258	0.819
Instars IV–VII	57	0.127	33	0.582
Prepupae	24	0.053	1	0.038
Pupae	23	0.051	7	0.029
Adults	16	0.036	0	1.000

Source: Data from R. W. Campbell 1969.

- The life table is useful for studying several areas of plant demography
 - Seedling mortality and survival
 - Population dynamics of perennial plants marked as seedlings
 - Life cycles of annual plants

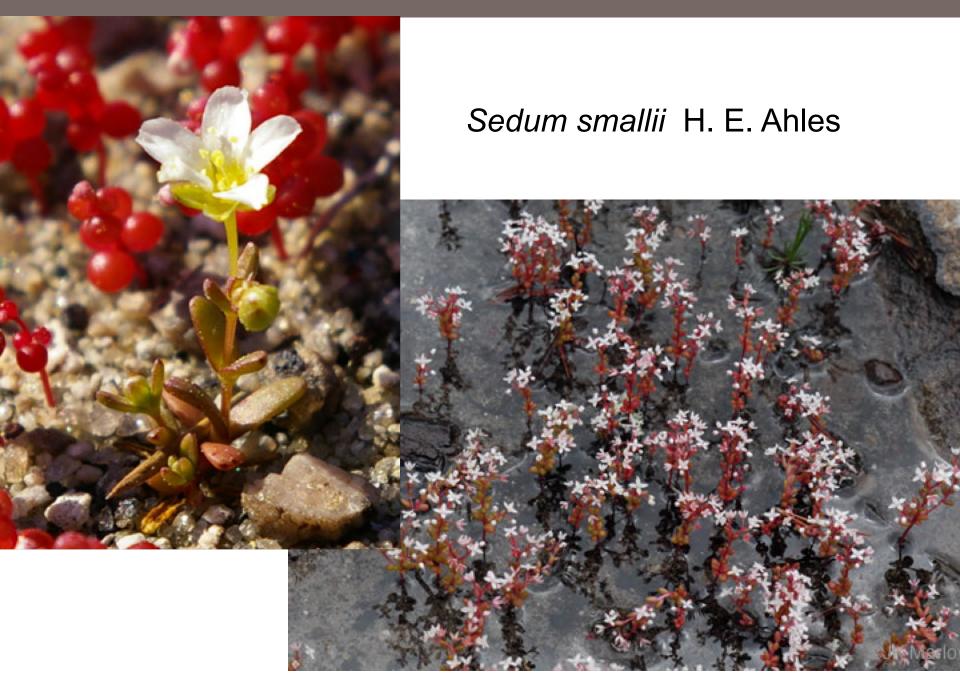


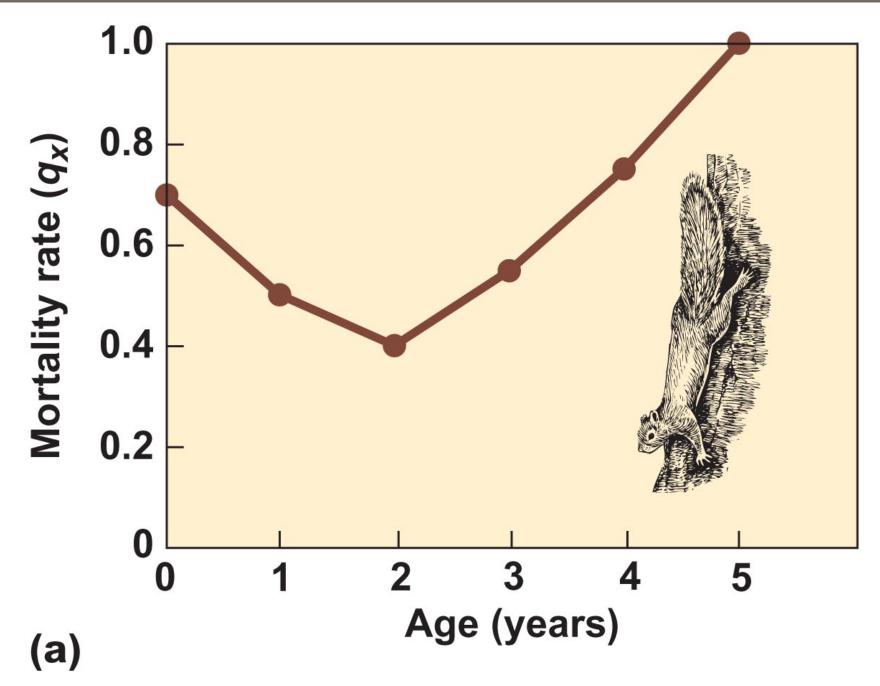
Table 10.3Life Table for a Natural Population ofSedum smallii

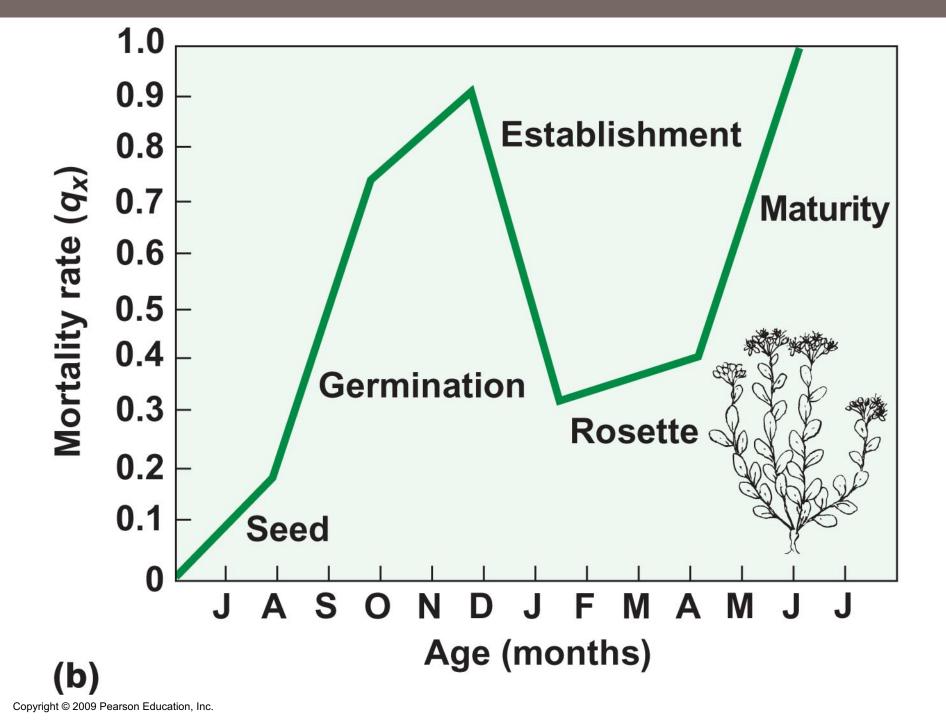
x	l_x	d_x	q_x
Seed produced	1.000	0.16	0.160
Available	0.840	0.630	0.750
Germinated	0.210	0.177	0.843
Established	0.033	0.009	0.273
Rosettes	0.024	0.010	0.417
Mature plants	0.014	0.014	1.000

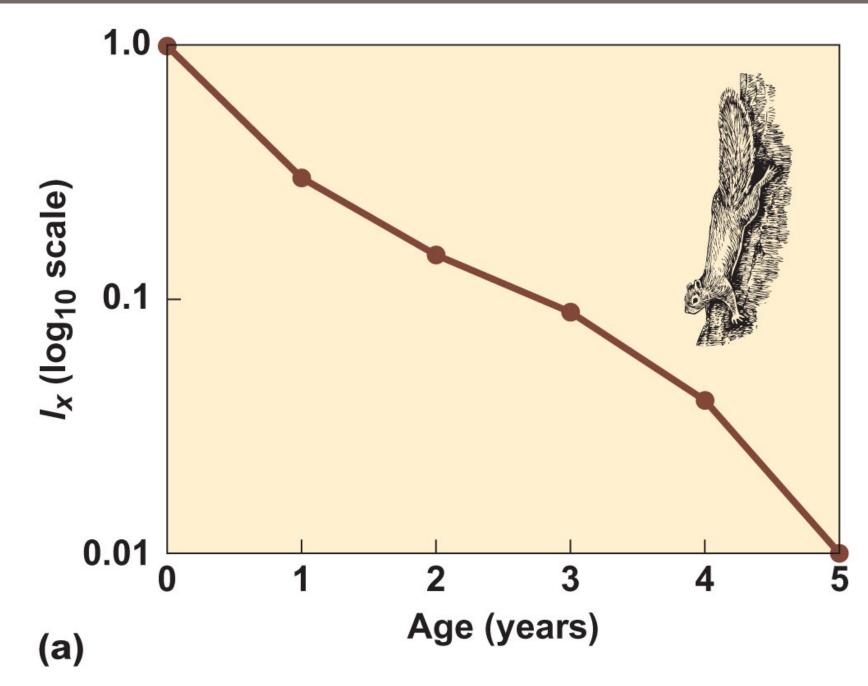
Source: Data from Sharitz and McCormick 1973.

10.4 Life Tables Provide Data for Mortality and Survivorship Curves

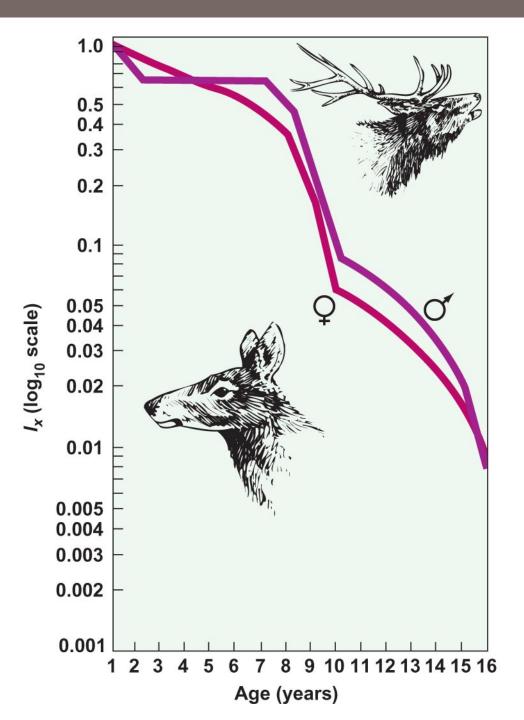
- Life table data are generally presented as:
 - A mortality curve that plots the q_x column against age (x)
 - A **survivorship curve** that plots the I_x column against age (x)
- Life tables and curves are based on data from one population at a specific time and under certain environmental conditions











10.4 Life Tables Provide Data for Mortality and Survivorship Curves

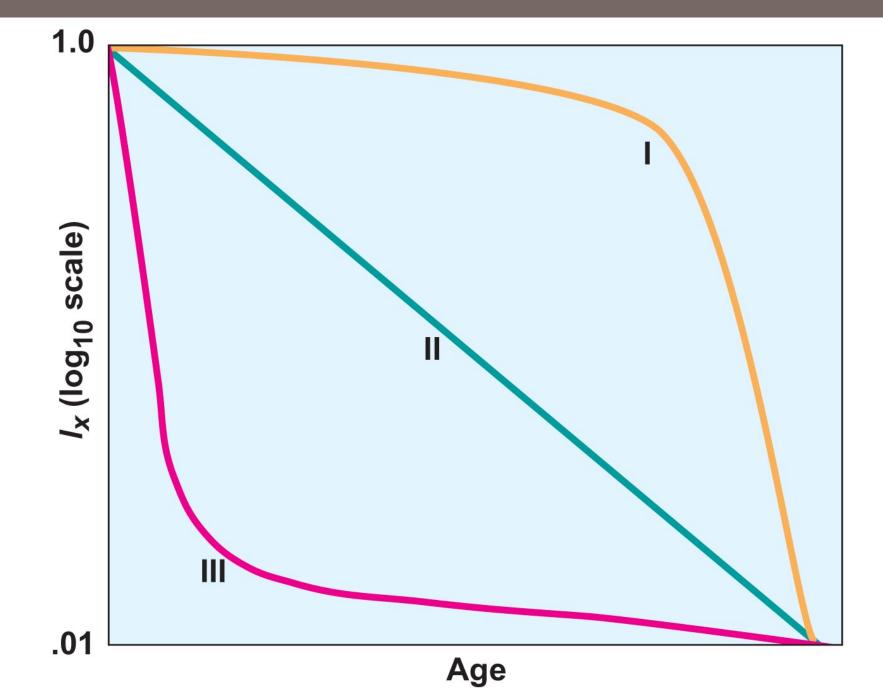
- There are three *idealized* types of survivorship curves
 - Type I: typical of populations in which individuals have long life spans, survival rate is high throughout the life span with heavy mortality at the end

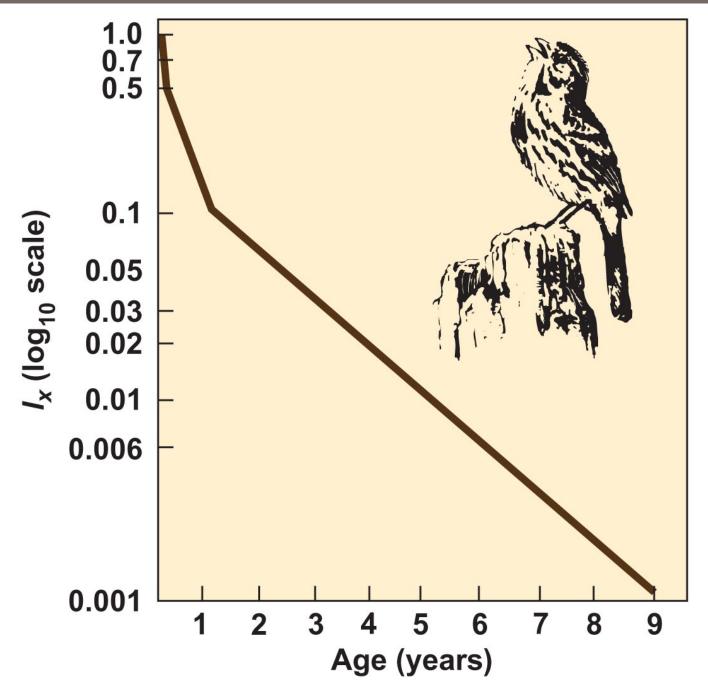
– Humans, other mammals, some plants

- **Type II**: survival rates do not vary with age

– Adult birds, rodents, reptiles, perennial plants

- Type III: mortality rates are extremely high in early life
 - Fish, many invertebrates, and plants





- The crude birthrate is expressed as births per 1000 population per unit time
 - Only females give birth
 - Birthrate of females generally varies with age
- Birthrate is better expressed as the number of births per female of age x

10.5 Birthrate is Age-Specific

- *b_x* = mean number of females born to a female in each age group
 - Continuing with the gray squirrel example
- Σ = gross reproductive rate = the average number of female offspring born to a female over her lifetime

X	b_{x}	
0	0	
1	2	
2	3	
3	3	
4	2	
5	0	
Σ	10	

10.6 Birthrate and Survivorship Determine Net Reproductive Rate

- A fecundity table combines the survivorship
 (/_x) with the age-specific birthrates (b_x)
- *I_xb_x* = mean number of females born in each age group, adjusted for survivorship

10.6 Birthrate and Survivorship Determine Net Reproductive Rate

R_o = net reproductive rate = the average number of females that will be produced during a lifetime by a newborn female

Table 10.4	Gray Squirrel	Fecundity Table
-------------------	---------------	-----------------

x	l_x	b _x	$l_x b_x$
0	1.0	0.0	0.00
1	0.3	2.0	0.60
2	0.15	3.0	0.45
3	0.09	3.0	0.27
4	0.04	2.0	0.08
5	0.01	0.0	0.00
Σ		10.0	1.40

10.6 Birthrate and Survivorship Determine Net Reproductive Rate

- *R*₀ = 1; on average, females will replace themselves in the population
- *R*₀ < 1; females are not replacing themselves in the population
- *R*₀ > 1; females are more than replacing themselves in the population

10.7 Age-Specific Mortality and Birthrates Can Be Used to Project Population Growth

- For simplicity, age-specific mortality (q_x) is converted to **age-specific survival** (s_x)
 s_x = 1 q_x
- A population projection table can be constructed using s_x and b_x

Table 10.5Age-Specific Survival and Birthrates forSquirrel Population

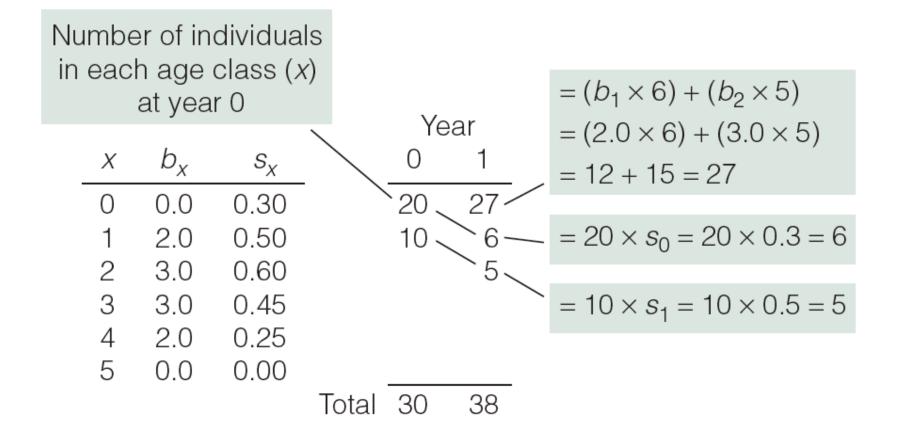
x	l _x	q _x	s _x	\boldsymbol{b}_x
0	1.0	0.7	0.3	0.0
1	0.3	0.5	0.5	2.0
2	0.15	0.4	0.6	3.0
3	0.09	0.55	0.45	3.0
4	0.04	0.75	0.25	2.0
5	0.01	1.0	0.0	0.0

10.7 Age-Specific Mortality and Birthrates Can Be Used to Project Population Growth

- We will use the life and fecundity table values of the gray squirrel to illustrate a hypothetical population of squirrels introduced into an unoccupied forest
- Females are only used to construct the population projection table

10.7 Age-Specific Mortality and Birthrates Can Be Used to Project Population Growth

- Initial population size
 - $-x_0 = 20$ individuals of age 0
 - $-x_1 = 10$ adults of age 1



10.7 Age-Specific Mortality and Birthrates Can Be Used to Project Population Growth

 Survivorship and fecundity are determined in a similar manner for each succeeding year

	Year (t)										
Age	0	1	2	3	4	5	6	7	8	9	10
0	20	27	34.1	40.71	48.21	58.37	70.31	84.8	101.86	122.88	148.06
1	10	6	8.1	10.23	12.05	14.46	17.51	21.0	25.44	30.56	36.86
2	0	5	3.0	4.05	5.1	6.03	7.23	8.7	10.50	12.72	15.28
3	0	0	3.0	1.8	2.43	3.06	3.62	4.4	5.22	6.30	7.63
4	0	0	0	1.35	0.81	1.09	1.38	1.6	1.94	2.35	2.83
5	0	0	0	0	0.33	0.20	0.27	0.35	0.40	0.49	0.59
Total $N(t)$	30	38	48.2	58.14	68.93	83.21	100.32	120.85	145.36	175.30	211.25
Lambda	λ	1.27	1.27	1.21	1.19	1.21	1.20	1.20	1.20	1.20	1.20

Table 10.6 Population Projection Table, Squirrel Population

- An age distribution for each successive year can be calculated from a population projection table
 - Age distribution is the proportion of individuals in the various age classes for any one year
- A stable age distribution is attained when the proportions of each age group in the population remain the same year after year (even though *N(t)* increases)

Table 10.7 Approximation of Stable Age Distribution, Squirrel Population											
Proportion in Each Age Class for Year											
Age	0	1	2	3	4	5	6	7	8	9	10
0	.67	.71	.71	.71	.69	.70	.70	.70	.70	.70	.70
1	.33	.16	.17	.17	.20	.17	.17	.18	.18	.18	.18
2		.13	.06	.07	.06	.07	.07	.07	.07	.07	.07
3			.06	.03	.03	.04	.04	.03	.03	.03	.03
4				.02	.01	.01	.01	.01	.01	.01	.01
5					.01	.01	.01	.01	.01	.01	.01

Copyright © 2009 Pearson Education, Inc.

- An estimate of population growth can be derived from a population projection table
- $\lambda =$ finite multiplication rate = N(t + 1)/N(t)
 - Once the population reaches a stable age distribution, the value of $\boldsymbol{\lambda}$ remains constant
- $\lambda > 1.0$ indicates a population that is growing
- $\lambda < 1.0$ indicates a population in decline
- λ = 1.0 indicates a stable population size through time

- The population projection table demonstrates two concepts of population growth
 - λ (estimated population growth rate) is a function of s_x and b_x
 - The constant rate of population increase from year to year and the stable age distribution are results of s_x and b_x that are constant through time

If λ does *not* vary (under conditions of stable age distribution), population size in the future can be projected

 $- \mathcal{N}(t) = \mathcal{N}(0) \lambda t$

 Describes a pattern of population growth similar to the exponential growth model



- Geometric population growth = N(t) = N(0) λt
 - Finite
- Exponential population growth = N(t) = N(0)e^{rt}
 - Continuous
- $\lambda = e^r$ or $r = \ln \lambda$

10.8 Stochastic Processes Can Influence Population Dynamics

- Population dynamics represent the combined outcome of many individual probabilities
 - Age-specific survival rates (*s_x*) represent the
 probability that a female of that age will survive to
 the next age class
- This reality has led ecologists to develop probabilistic or stochastic models of population growth to account for these variations

10.8 Stochastic Processes Can Influence Population Dynamics

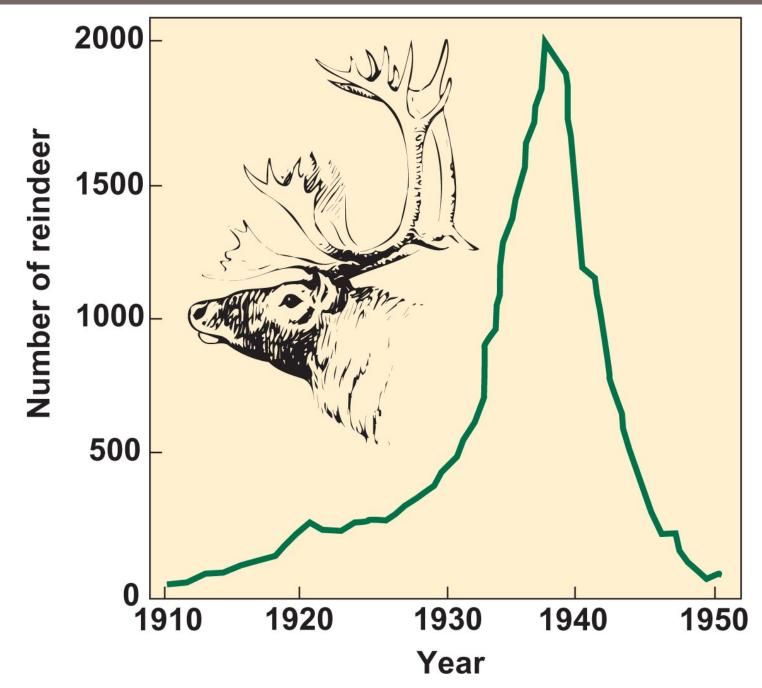
- Demographic stochasticity is the random (stochastic) variations in birth and death rates from year to year
 - The variations in *d* and *b* cause populations to deviate from the predictions based on deterministic models
- Environmental stochasticity is the random variations in the environment or the occurrence of natural disasters
 - These events directly influence *d* and *b*

10.9 A Variety of Factors Can Lead to Population Extinction

- Under the following conditions, a population can become so small that it declines toward extinction:
 - When deaths exceed births, populations decline
 - R_0 becomes less than 1.0
 - *r* becomes negative

10.9 A Variety of Factors Can Lead to Population Extinction

- Under the following conditions, a population can become so small that it declines toward extinction:
 - Extreme environmental events
 - Severe shortage of resources



10.9 A Variety of Factors Can Lead to Population Extinction

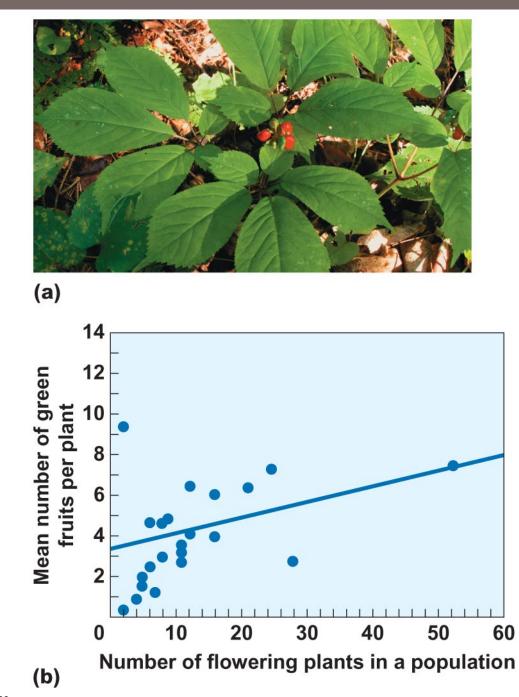
- Under the following conditions, a population can become so small that it declines toward extinction:
 - Introduction of a novel predator, competitor, or parasite (disease)
 - Habitat loss (due to human activities)
 - Small population size

10.10 Small Populations Are Susceptible to Extinction

- Small populations are more susceptible to both demographic and environmental stochasticity
- When only a few individuals make up a population, the fate of each individual can be crucial to population survival
 - Over large territories, it can be impossible to find a mate (large cats)
 - Chemical signals will not be intercepted (insects)
 - Pollination is unlikely (plants)

10.10 Small Populations Are Susceptible to Extinction

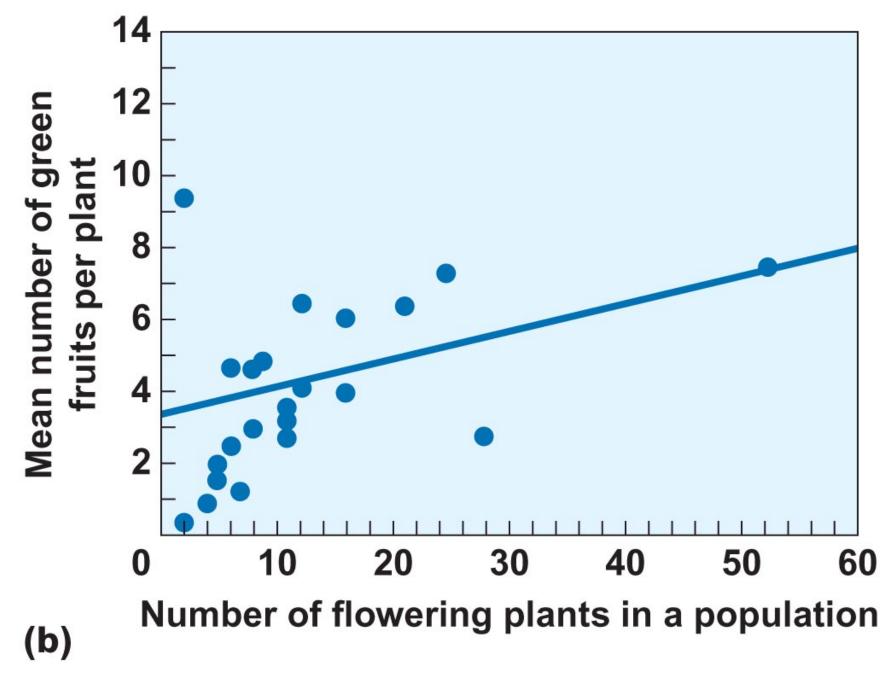
- Hackney and McGraw (West Virginia University) examined the reproductive limitations by small population size on American ginseng (*Panax quinquefolius*)
 - Fruit production per plant declined with decreasing population size due to reduced visitation by pollination



Copyright © 2009 Pearson Education, Inc.

(a)

Copyright © 2009 Pearson Education, Inc.



10.10 Small Populations Are Susceptible to Extinction

- Small population size may result in the breakdown of social structures that are integral to successful cooperative behaviors (mating, foraging, defense)
- The Allee effect is the decline in reproduction or survival under conditions of low population density
- There is less genetic variation in a small population and this may affect the population's ability to adapt to environmental change