B Appendix C
## [1] "2024-11-07"
## # A tibble: 824 × 10
## gender dob hiv_risk_factor_f Poverty_numeric hh_size ins_type_f
## <chr> <chr> <chr> <dbl> <dbl> <chr>
## 1 Hombre 8/21/34 Heterosexual 0.5 2 Medicaid
## 2 Mujer 1/25/31 Heterosexual 0.5 3 Medicaid
## 3 Hombre 11/18/36 Heterosexual 0.5 1 Medicaid
## 4 Mujer 6/29/37 Heterosexual 0.5 1 Medicaid
## 5 Hombre 12/26/42 Heterosexual 0.5 2 Medicaid
## 6 Mujer 3/21/40 Heterosexual 0.5 2 Medicaid
## 7 Hombre 8/17/36 Heterosexual 0.5 1 Medicaid
## 8 Mujer 10/17/42 Heterosexual 0.5 1 Medicaid
## 9 Mujer 10/17/42 Heterosexual 0.5 1 Medicaid
## 10 Hombre 7/17/47 Heterosexual 0.5 2 Medicaid
## # ℹ 814 more rows
## # ℹ 4 more variables: vital_status <chr>, date_of_death <chr>, hiv_date <chr>,
## # lifespan <dbl>
https://www.stat.berkeley.edu/~s133/dates.html
## # A tibble: 824 × 10
## gender dob hiv_risk_factor_f Poverty_numeric hh_size ins_type_f
## <chr> <date> <chr> <dbl> <dbl> <chr>
## 1 Hombre 1934-08-21 Heterosexual 0.5 2 Medicaid
## 2 Mujer 1931-01-25 Heterosexual 0.5 3 Medicaid
## 3 Hombre 1936-11-18 Heterosexual 0.5 1 Medicaid
## 4 Mujer 1937-06-29 Heterosexual 0.5 1 Medicaid
## 5 Hombre 1942-12-26 Heterosexual 0.5 2 Medicaid
## 6 Mujer 1940-03-21 Heterosexual 0.5 2 Medicaid
## 7 Hombre 1936-08-17 Heterosexual 0.5 1 Medicaid
## 8 Mujer 1942-10-17 Heterosexual 0.5 1 Medicaid
## 9 Mujer 1942-10-17 Heterosexual 0.5 1 Medicaid
## 10 Hombre 1947-07-17 Heterosexual 0.5 2 Medicaid
## # ℹ 814 more rows
## # ℹ 4 more variables: vital_status <chr>, date_of_death <chr>, hiv_date <chr>,
## # lifespan <dbl>
Calculate the time between the date of diagnosis of HIV and the date of death.
## # A tibble: 824 × 12
## gender dob hiv_risk_factor_f Poverty_numeric hh_size ins_type_f
## <chr> <date> <chr> <dbl> <dbl> <chr>
## 1 Hombre 1934-08-21 Heterosexual 0.5 2 Medicaid
## 2 Mujer 1931-01-25 Heterosexual 0.5 3 Medicaid
## 3 Hombre 1936-11-18 Heterosexual 0.5 1 Medicaid
## 4 Mujer 1937-06-29 Heterosexual 0.5 1 Medicaid
## 5 Hombre 1942-12-26 Heterosexual 0.5 2 Medicaid
## 6 Mujer 1940-03-21 Heterosexual 0.5 2 Medicaid
## 7 Hombre 1936-08-17 Heterosexual 0.5 1 Medicaid
## 8 Mujer 1942-10-17 Heterosexual 0.5 1 Medicaid
## 9 Mujer 1942-10-17 Heterosexual 0.5 1 Medicaid
## 10 Hombre 1947-07-17 Heterosexual 0.5 2 Medicaid
## # ℹ 814 more rows
## # ℹ 6 more variables: vital_status <chr>, date_of_death <chr>, hiv_date <chr>,
## # lifespan <dbl>, date_d <date>, hiv_d <date>
## # A tibble: 824 × 12
## gender dob hiv_risk_factor_f Poverty_numeric hh_size ins_type_f
## <chr> <date> <chr> <dbl> <dbl> <chr>
## 1 Hombre 1934-08-21 Heterosexual 0.5 2 Medicaid
## 2 Mujer 1931-01-25 Heterosexual 0.5 3 Medicaid
## 3 Hombre 1936-11-18 Heterosexual 0.5 1 Medicaid
## 4 Mujer 1937-06-29 Heterosexual 0.5 1 Medicaid
## 5 Hombre 1942-12-26 Heterosexual 0.5 2 Medicaid
## 6 Mujer 1940-03-21 Heterosexual 0.5 2 Medicaid
## 7 Hombre 1936-08-17 Heterosexual 0.5 1 Medicaid
## 8 Mujer 1942-10-17 Heterosexual 0.5 1 Medicaid
## 9 Mujer 1942-10-17 Heterosexual 0.5 1 Medicaid
## 10 Hombre 1947-07-17 Heterosexual 0.5 2 Medicaid
## # ℹ 814 more rows
## # ℹ 6 more variables: vital_status <chr>, date_of_death <chr>, hiv_date <date>,
## # lifespan <dbl>, date_d <date>, hiv_d <date>
## # A tibble: 824 × 13
## gender dob hiv_risk_factor_f Poverty_numeric hh_size ins_type_f
## <chr> <date> <chr> <dbl> <dbl> <chr>
## 1 Hombre 1934-08-21 Heterosexual 0.5 2 Medicaid
## 2 Mujer 1931-01-25 Heterosexual 0.5 3 Medicaid
## 3 Hombre 1936-11-18 Heterosexual 0.5 1 Medicaid
## 4 Mujer 1937-06-29 Heterosexual 0.5 1 Medicaid
## 5 Hombre 1942-12-26 Heterosexual 0.5 2 Medicaid
## 6 Mujer 1940-03-21 Heterosexual 0.5 2 Medicaid
## 7 Hombre 1936-08-17 Heterosexual 0.5 1 Medicaid
## 8 Mujer 1942-10-17 Heterosexual 0.5 1 Medicaid
## 9 Mujer 1942-10-17 Heterosexual 0.5 1 Medicaid
## 10 Hombre 1947-07-17 Heterosexual 0.5 2 Medicaid
## # ℹ 814 more rows
## # ℹ 7 more variables: vital_status <chr>, date_of_death <chr>, hiv_date <date>,
## # lifespan <dbl>, date_d <date>, hiv_d <date>, edad <dbl>
## # A tibble: 824 × 13
## gender dob hiv_risk_factor_f Poverty_numeric hh_size ins_type_f
## <chr> <date> <chr> <dbl> <dbl> <chr>
## 1 Hombre 1934-08-21 Heterosexual 0.5 2 Medicaid
## 2 Mujer 1931-01-25 Heterosexual 0.5 3 Medicaid
## 3 Hombre 1936-11-18 Heterosexual 0.5 1 Medicaid
## 4 Mujer 1937-06-29 Heterosexual 0.5 1 Medicaid
## 5 Hombre 1942-12-26 Heterosexual 0.5 2 Medicaid
## 6 Mujer 1940-03-21 Heterosexual 0.5 2 Medicaid
## 7 Hombre 1936-08-17 Heterosexual 0.5 1 Medicaid
## 8 Mujer 1942-10-17 Heterosexual 0.5 1 Medicaid
## 9 Mujer 1942-10-17 Heterosexual 0.5 1 Medicaid
## 10 Hombre 1947-07-17 Heterosexual 0.5 2 Medicaid
## # ℹ 814 more rows
## # ℹ 7 more variables: vital_status <chr>, date_of_death <date>,
## # hiv_date <date>, lifespan <dbl>, date_d <date>, hiv_d <date>, edad <dbl>
## # A tibble: 824 × 14
## gender dob hiv_risk_factor_f Poverty_numeric hh_size ins_type_f
## <chr> <date> <chr> <dbl> <dbl> <chr>
## 1 Hombre 1934-08-21 Heterosexual 0.5 2 Medicaid
## 2 Mujer 1931-01-25 Heterosexual 0.5 3 Medicaid
## 3 Hombre 1936-11-18 Heterosexual 0.5 1 Medicaid
## 4 Mujer 1937-06-29 Heterosexual 0.5 1 Medicaid
## 5 Hombre 1942-12-26 Heterosexual 0.5 2 Medicaid
## 6 Mujer 1940-03-21 Heterosexual 0.5 2 Medicaid
## 7 Hombre 1936-08-17 Heterosexual 0.5 1 Medicaid
## 8 Mujer 1942-10-17 Heterosexual 0.5 1 Medicaid
## 9 Mujer 1942-10-17 Heterosexual 0.5 1 Medicaid
## 10 Hombre 1947-07-17 Heterosexual 0.5 2 Medicaid
## # ℹ 814 more rows
## # ℹ 8 more variables: vital_status <chr>, date_of_death <date>,
## # hiv_date <date>, lifespan <dbl>, date_d <date>, hiv_d <date>, edad <dbl>,
## # diagnosed_death <dbl>
Calculate the difference in life between the date of diagnosis and death
## [1] 182 17 3 11 159 46 143 190 188 265 196 272 97 332 307 282 179 368
## [19] 363 363 228 192 195 80 55 299 299 17 1 273 216 86 201 201 154 110
## [37] 55 32 182 123 74 324 223 213 127 72 264 116 100 95 57 4 220 204
## [55] 102 10 4 339 306 294 208 205 167 102 86 1 320 320 240 181 176 115
## [73] 33 2 314 197 203 181 183 137 47 47 46 27 373 239 239 239 231 223
## [91] 201 195 200 174 160 158 81 27 17 326 332 312 312 280 226 226 211 171
## [109] 163 129 105 80 76 58 11 10 309 275 243 234 117 56 329 302 271 266
## [127] 196 161 124 118 72 71 313 209 198 157 158 155 44 267 273 254 188 134
## [145] 110 77 48 6 261 218 110 90 25 252 154 65 18 14 276 227 157 161
## [163] 29 273 243 118 79 51 42 1 262 229 87 246 158 3 256 144 143 61
## [181] 31 19 2 141 173 23 15 5 102 102 179 67 36 177 132 0 5 197
## [199] 121 2 225 225 164 166 2 132 132 106 66 87 67 295 236 346 211 204
## [217] 286 334 150 166 90 215 24 69 4 132 2 230 222 169 112 27 233 65
## [235] 2 279 271 238 232 21 228 223 191 207 164 151 162 65 65 67 17 286
## [253] 97 212 19 324 86 110 68 208 203 183 284 62 52 30 137 10 193 22
## [271] 101 101 97 96 90 0 0 266 298 227 97 128 10 312 323 4 0 4
## [289] 274 241 209 168 168 316 207 84 287 100 461 237 237 235 139 214 98 355
## [307] 323 280 283 315 298 298 231 180 212 224 221 221 221 337 174 142 423 371
## [325] 166 282 265 165 164 391 394 348 352 352 338 242 196 162 128 291 263 235
## [343] 235 269 204 214 201 175 160 146 154 81 339 291 277 259 219 213 207 213
## [361] 180 132 140 119 111 102 392 283 281 229 189 38 274 168 168 170 164 157
## [379] 150 150 135 87 79 322 322 322 274 259 216 167 138 317 289 275 237 186
## [397] 150 144 125 80 72 49 56 315 292 233 221 219 195 195 198 177 152 144
## [415] 103 67 384 381 379 345 332 210 170 159 143 142 132 99 90 95 95 87
## [433] 33 33 33 26 377 340 307 301 225 179 166 115 97 93 54 416 335 249
## [451] 222 213 201 189 141 52 42 318 300 300 300 244 238 218 186 176 136 142
## [469] 131 131 127 124 109 76 54 264 214 185 181 151 154 154 73 70 403 336
## [487] 281 228 216 187 190 179 144 131 100 47 43 347 289 277 259 259 259 218
## [505] 218 211 157 141 53 4 281 257 229 224 217 218 134 134 90 95 56 34
## [523] 35 21 22 386 284 248 235 235 207 199 146 144 122 110 66 273 197 153
## [541] 107 100 67 254 209 173 122 122 114 56 2 247 127 106 85 76 67 3
## [559] 193 198 199 164 108 65 127 112 103 179 34 14 212 191 150 144 80 171
## [577] 133 66 121 95 182 166 21 6 1 31 23 6 388 388 62 20 26 158
## [595] 332 370 274 242 228 98 15 277 222 306 52 187 186 269 295 195 172 214
## [613] 184 123 6 55 3 142 148 93 139 316 270 271 262 179 182 240 189 73
## [631] 32 106 134 83 281 236 137 137 144 249 304 192 34 259 197 3 155 223
## [649] 165 152 184 329 329 253 107 135 50 134 141 227 142 124 57 223 175 171
## [667] 241 215 71 1 269 230 292 252 25 248 63 248 261 188 91 190 175 69
## [685] 25 192 162 211 248 261 278 199 233 456 455 229 156 111 124 22 233 323
## [703] 344 340 114 193 118 246 267 254 195 168 229 236 219 280 332 313 244 244
## [721] 295 187 137 138 182 86 125 17 57 361 384 128 358 212 374 310 157 99
## [739] 99 84 126 214 125 321 129 111 58 69 190 190 52 24 226 226 321 296
## [757] 211 118 101 276 258 222 115 182 137 251 208 32 8 2 0 206 210 186
## [775] 112 475 57 316 231 351 143 252 159 327 336 65 143 254 254 3 15 90
## [793] 209 183 183 271 81 235 163 283 248 190 59 119 230 288 410 216 24 120
## [811] 54 1 290 279 268 293 260 81 269 272 309 361 336 315
HIV %>%
mutate(Period_HIV_death = as.duration(hiv_d %--% date_d)) |>
summarise(mean_time=mean(Period_HIV_death))
## # A tibble: 1 × 1
## mean_time
## <dbl>
## 1 462043713.