Fecha de la ultima revisión

## [1] "2025-01-15"


Descargo de responsabilidad

Los datos siguientes son archivos públicos disponible en el web. En ningún momento uno se responsabiliza de la calidad de los datos. Los datos en este curso son para fin de entender el proceso de hacer gráficos de calidad. En cada archivo se pone el enlace donde se consiguió la información. No hay garantía que estos enlaces sean activos en el futuro.


CDC

Enlace de CDC, USA

Aquí encontrarán datos sobre bases de datos del CDC, Centers for Disease Control and prevention.

https://www.cdc.gov/library/researchguides/2019novelcoronavirus/datastatistics.html


WHO

Enlace de WHO, World Health Organization.
https://www.who.int/tb/country/data/download/en/

En este sitio se encuentra muchos diferentes tipos de datos.

En el enlace son los datos de tuberculosis en diferentes paises del mundo.


Tuberculosis

Tuberculosis entre 2001-2018 global

  1. TB_burden_countries_2020-08-02

Datos de COVID-19

Datos de COVID-19, United Kingdom provienen de https://coronavirus.data.gov.uk

  1. coronavirus-cases_latest_UK.csv
  2. coronavirus-mortandad_latest_UK.csv

Datos de muchos paises sobre los casos de COVID-19 https://data.humdata.org/dataset/novel-coronavirus-2019-ncov-cases?

  1. Global_serie_tiempo.cvs
  2. Global_serie_mortandad_tiempo.cvs

Datos de Belgica https://epistat.wiv-isp.be/covid/

  1. Belgica.xls

COVID-19: Base de Datos Mundial de Our world in Data

El siguiente archivo es para tener aceso a datos sobre los casos de COVID-19 por día en todo el planeta. El archivo esta mantenido en el siguiente enlace https://github.com/owid/covid-19-data/tree/master/public/data

Para más información vea al website.

Las variables incluido al 4 de agosto son:

iso_code, continent, location, date, total_cases, new_cases, total_deaths, new_deaths, total_cases_per_million, new_cases_per_million, total_deaths_per_million, new_deaths_per_million, total_tests, new_tests, new_tests_smoothed, total_tests_per_thousand, new_tests_per_thousand, new_tests_smoothed_per_thousand, tests_per_case, positive_rate, tests_units, stringency_index, population, population_density, median_age, aged_65_older, aged_70_older, gdp_per_capita, extreme_poverty, cardiovasc_death_rate, diabetes_prevalence, female_smokers, male_smokers, handwashing_facilities, hospital_beds_per_thousand, life_expectancy

Para la descripción de las variables vea este enlace.

library(gt)
codes<-read.csv('https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/owid-covid-codebook.csv')


c=codes%>%
  gt()%>%
   tab_options(table.font.size = 10)
c
column source category description
iso_code International Organization for Standardization Others ISO 3166-1 alpha-3 – three-letter country codes. Note that OWID-defined regions (e.g. continents like 'Europe') contain prefix 'OWID_'.
continent Our World in Data Others Continent of the geographical location
location Our World in Data Others Geographical location
date Our World in Data Others Date of observation
total_cases COVID-19 Dashboard by the WHO Confirmed cases Total confirmed cases of COVID-19. Counts can include probable cases, where reported.
new_cases COVID-19 Dashboard by the WHO Confirmed cases New confirmed cases of COVID-19. Counts can include probable cases, where reported. In rare cases where our source reports a negative daily change due to a data correction, we set this metric to NA.
new_cases_smoothed COVID-19 Dashboard by the WHO Confirmed cases New confirmed cases of COVID-19 (7-day smoothed). Counts can include probable cases, where reported.
total_deaths COVID-19 Dashboard by the WHO Confirmed deaths Total deaths attributed to COVID-19. Counts can include probable deaths, where reported.
new_deaths COVID-19 Dashboard by the WHO Confirmed deaths New deaths attributed to COVID-19. Counts can include probable deaths, where reported. In rare cases where our source reports a negative daily change due to a data correction, we set this metric to NA.
new_deaths_smoothed COVID-19 Dashboard by the WHO Confirmed deaths New deaths attributed to COVID-19 (7-day smoothed). Counts can include probable deaths, where reported.
total_cases_per_million COVID-19 Dashboard by the WHO Confirmed cases Total confirmed cases of COVID-19 per 1,000,000 people. Counts can include probable cases, where reported.
new_cases_per_million COVID-19 Dashboard by the WHO Confirmed cases New confirmed cases of COVID-19 per 1,000,000 people. Counts can include probable cases, where reported.
new_cases_smoothed_per_million COVID-19 Dashboard by the WHO Confirmed cases New confirmed cases of COVID-19 (7-day smoothed) per 1,000,000 people. Counts can include probable cases, where reported.
total_deaths_per_million COVID-19 Dashboard by the WHO Confirmed deaths Total deaths attributed to COVID-19 per 1,000,000 people. Counts can include probable deaths, where reported.
new_deaths_per_million COVID-19 Dashboard by the WHO Confirmed deaths New deaths attributed to COVID-19 per 1,000,000 people. Counts can include probable deaths, where reported.
new_deaths_smoothed_per_million COVID-19 Dashboard by the WHO Confirmed deaths New deaths attributed to COVID-19 (7-day smoothed) per 1,000,000 people. Counts can include probable deaths, where reported.
reproduction_rate Arroyo Marioli et al. (2020). https://doi.org/10.2139/ssrn.3581633 Reproduction rate Real-time estimate of the effective reproduction rate (R) of COVID-19. See https://github.com/crondonm/TrackingR/tree/main/Estimates-Database
icu_patients National government reports and European CDC Hospital & ICU Number of COVID-19 patients in intensive care units (ICUs) on a given day
icu_patients_per_million National government reports and European CDC Hospital & ICU Number of COVID-19 patients in intensive care units (ICUs) on a given day per 1,000,000 people
hosp_patients National government reports and European CDC Hospital & ICU Number of COVID-19 patients in hospital on a given day
hosp_patients_per_million National government reports and European CDC Hospital & ICU Number of COVID-19 patients in hospital on a given day per 1,000,000 people
weekly_icu_admissions National government reports and European CDC Hospital & ICU Number of COVID-19 patients newly admitted to intensive care units (ICUs) in a given week (reporting date and the preceeding 6 days)
weekly_icu_admissions_per_million National government reports and European CDC Hospital & ICU Number of COVID-19 patients newly admitted to intensive care units (ICUs) in a given week per 1,000,000 people (reporting date and the preceeding 6 days)
weekly_hosp_admissions National government reports and European CDC Hospital & ICU Number of COVID-19 patients newly admitted to hospitals in a given week (reporting date and the preceeding 6 days)
weekly_hosp_admissions_per_million National government reports and European CDC Hospital & ICU Number of COVID-19 patients newly admitted to hospitals in a given week per 1,000,000 people (reporting date and the preceeding 6 days)
total_tests National government reports Tests & positivity Total tests for COVID-19
new_tests National government reports Tests & positivity New tests for COVID-19 (only calculated for consecutive days)
total_tests_per_thousand National government reports Tests & positivity Total tests for COVID-19 per 1,000 people
new_tests_per_thousand National government reports Tests & positivity New tests for COVID-19 per 1,000 people
new_tests_smoothed National government reports Tests & positivity New tests for COVID-19 (7-day smoothed). For countries that don't report testing data on a daily basis, we assume that testing changed equally on a daily basis over any periods in which no data was reported. This produces a complete series of daily figures, which is then averaged over a rolling 7-day window
new_tests_smoothed_per_thousand National government reports Tests & positivity New tests for COVID-19 (7-day smoothed) per 1,000 people
positive_rate National government reports Tests & positivity The share of COVID-19 tests that are positive, given as a rolling 7-day average (this is the inverse of tests_per_case)
tests_per_case National government reports Tests & positivity Tests conducted per new confirmed case of COVID-19, given as a rolling 7-day average (this is the inverse of positive_rate)
tests_units National government reports Tests & positivity Units used by the location to report its testing data. A country file can't contain mixed units. All metrics concerning testing data use the specified test unit. Valid units are 'people tested' (number of people tested), 'tests performed' (number of tests performed. a single person can be tested more than once in a given day) and 'samples tested' (number of samples tested. In some cases, more than one sample may be required to perform a given test.)
total_vaccinations National government reports Vaccinations Total number of COVID-19 vaccination doses administered
people_vaccinated National government reports Vaccinations Total number of people who received at least one vaccine dose
people_fully_vaccinated National government reports Vaccinations Total number of people who received all doses prescribed by the initial vaccination protocol
total_boosters National government reports Vaccinations Total number of COVID-19 vaccination booster doses administered (doses administered beyond the number prescribed by the vaccination protocol)
new_vaccinations National government reports Vaccinations New COVID-19 vaccination doses administered (only calculated for consecutive days)
new_vaccinations_smoothed National government reports Vaccinations New COVID-19 vaccination doses administered (7-day smoothed). For countries that don't report vaccination data on a daily basis, we assume that vaccination changed equally on a daily basis over any periods in which no data was reported. This produces a complete series of daily figures, which is then averaged over a rolling 7-day window
total_vaccinations_per_hundred National government reports Vaccinations Total number of COVID-19 vaccination doses administered per 100 people in the total population
people_vaccinated_per_hundred National government reports Vaccinations Total number of people who received at least one vaccine dose per 100 people in the total population
people_fully_vaccinated_per_hundred National government reports Vaccinations Total number of people who received all doses prescribed by the initial vaccination protocol per 100 people in the total population
total_boosters_per_hundred National government reports Vaccinations Total number of COVID-19 vaccination booster doses administered per 100 people in the total population
new_vaccinations_smoothed_per_million National government reports Vaccinations New COVID-19 vaccination doses administered (7-day smoothed) per 1,000,000 people in the total population
new_people_vaccinated_smoothed National government reports Vaccinations Daily number of people receiving their first vaccine dose (7-day smoothed)
new_people_vaccinated_smoothed_per_hundred National government reports Vaccinations Daily number of people receiving their first vaccine dose (7-day smoothed) per 100 people in the total population
stringency_index Oxford COVID-19 Government Response Tracker, Blavatnik School of Government Policy responses Government Response Stringency Index: composite measure based on 9 response indicators including school closures, workplace closures, and travel bans, rescaled to a value from 0 to 100 (100 = strictest response)
population United Nations, Department of Economic and Social Affairs, Population Division, World Population Prospects 2019 Revision Others Population (latest available values). See https://github.com/owid/covid-19-data/blob/master/scripts/input/un/population_latest.csv for full list of sources
population_density World Bank World Development Indicators, sourced from Food and Agriculture Organization and World Bank estimates Others Number of people divided by land area, measured in square kilometers, most recent year available
median_age UN Population Division, World Population Prospects, 2017 Revision Others Median age of the population, UN projection for 2020
aged_65_older World Bank World Development Indicators based on age/sex distributions of United Nations World Population Prospects 2017 Revision Others Share of the population that is 65 years and older, most recent year available
aged_70_older United Nations, Department of Economic and Social Affairs, Population Division (2017), World Population Prospects 2017 Revision Others Share of the population that is 70 years and older in 2015
gdp_per_capita World Bank World Development Indicators, source from World Bank, International Comparison Program database Others Gross domestic product at purchasing power parity (constant 2011 international dollars), most recent year available
extreme_poverty World Bank World Development Indicators, sourced from World Bank Development Research Group Others Share of the population living in extreme poverty, most recent year available since 2010
cardiovasc_death_rate Global Burden of Disease Collaborative Network, Global Burden of Disease Study 2017 Results Others Death rate from cardiovascular disease in 2017 (annual number of deaths per 100,000 people)
diabetes_prevalence World Bank World Development Indicators, sourced from International Diabetes Federation, Diabetes Atlas Others Diabetes prevalence (% of population aged 20 to 79) in 2017
female_smokers World Bank World Development Indicators, sourced from World Health Organization, Global Health Observatory Data Repository Others Share of women who smoke, most recent year available
male_smokers World Bank World Development Indicators, sourced from World Health Organization, Global Health Observatory Data Repository Others Share of men who smoke, most recent year available
handwashing_facilities United Nations Statistics Division Others Share of the population with basic handwashing facilities on premises, most recent year available
hospital_beds_per_thousand OECD, Eurostat, World Bank, national government records and other sources Others Hospital beds per 1,000 people, most recent year available since 2010
life_expectancy James C. Riley, Clio Infra, United Nations Population Division Others Life expectancy at birth in 2019
human_development_index United Nations Development Programme (UNDP) Others A composite index measuring average achievement in three basic dimensions of human development—a long and healthy life, knowledge and a decent standard of living. Values for 2019, imported from http://hdr.undp.org/en/indicators/137506
excess_mortality Human Mortality Database (2021), World Mortality Dataset (2021) Excess mortality Percentage difference between the reported number of weekly or monthly deaths in 2020–2021 and the projected number of deaths for the same period based on previous years. For more information, see https://github.com/owid/covid-19-data/tree/master/public/data/excess_mortality
excess_mortality_cumulative Human Mortality Database (2021), World Mortality Dataset (2021) Excess mortality Percentage difference between the cumulative number of deaths since 1 January 2020 and the cumulative projected deaths for the same period based on previous years. For more information, see https://github.com/owid/covid-19-data/tree/master/public/data/excess_mortality
excess_mortality_cumulative_absolute Human Mortality Database (2021), World Mortality Dataset (2021) Excess mortality Cumulative difference between the reported number of deaths since 1 January 2020 and the projected number of deaths for the same period based on previous years. For more information, see https://github.com/owid/covid-19-data/tree/master/public/data/excess_mortality
excess_mortality_cumulative_per_million Human Mortality Database (2021), World Mortality Dataset (2021) Excess mortality Cumulative difference between the reported number of deaths since 1 January 2020 and the projected number of deaths for the same period based on previous years, per million people. For more information, see https://github.com/owid/covid-19-data/tree/master/public/data/excess_mortality
library(data.table)
mydat<- read.csv('https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/owid-covid-data.csv')


t=mydat%>%
  head(n=10)%>%
  gt()%>%
   tab_options(table.font.size = 10)
t
iso_code continent location date total_cases new_cases new_cases_smoothed total_deaths new_deaths new_deaths_smoothed total_cases_per_million new_cases_per_million new_cases_smoothed_per_million total_deaths_per_million new_deaths_per_million new_deaths_smoothed_per_million reproduction_rate icu_patients icu_patients_per_million hosp_patients hosp_patients_per_million weekly_icu_admissions weekly_icu_admissions_per_million weekly_hosp_admissions weekly_hosp_admissions_per_million total_tests new_tests total_tests_per_thousand new_tests_per_thousand new_tests_smoothed new_tests_smoothed_per_thousand positive_rate tests_per_case tests_units total_vaccinations people_vaccinated people_fully_vaccinated total_boosters new_vaccinations new_vaccinations_smoothed total_vaccinations_per_hundred people_vaccinated_per_hundred people_fully_vaccinated_per_hundred total_boosters_per_hundred new_vaccinations_smoothed_per_million new_people_vaccinated_smoothed new_people_vaccinated_smoothed_per_hundred stringency_index population_density median_age aged_65_older aged_70_older gdp_per_capita extreme_poverty cardiovasc_death_rate diabetes_prevalence female_smokers male_smokers handwashing_facilities hospital_beds_per_thousand life_expectancy human_development_index population excess_mortality_cumulative_absolute excess_mortality_cumulative excess_mortality excess_mortality_cumulative_per_million
AFG Asia Afghanistan 2020-01-05 0 0 NA 0 0 NA 0 0 NA 0 0 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0 54.42 18.6 2.58 1.34 1803.99 NA 597.03 9.59 NA NA 37.75 0.5 64.83 0.51 41128772 NA NA NA NA
AFG Asia Afghanistan 2020-01-06 0 0 NA 0 0 NA 0 0 NA 0 0 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0 54.42 18.6 2.58 1.34 1803.99 NA 597.03 9.59 NA NA 37.75 0.5 64.83 0.51 41128772 NA NA NA NA
AFG Asia Afghanistan 2020-01-07 0 0 NA 0 0 NA 0 0 NA 0 0 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0 54.42 18.6 2.58 1.34 1803.99 NA 597.03 9.59 NA NA 37.75 0.5 64.83 0.51 41128772 NA NA NA NA
AFG Asia Afghanistan 2020-01-08 0 0 NA 0 0 NA 0 0 NA 0 0 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0 54.42 18.6 2.58 1.34 1803.99 NA 597.03 9.59 NA NA 37.75 0.5 64.83 0.51 41128772 NA NA NA NA
AFG Asia Afghanistan 2020-01-09 0 0 NA 0 0 NA 0 0 NA 0 0 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0 54.42 18.6 2.58 1.34 1803.99 NA 597.03 9.59 NA NA 37.75 0.5 64.83 0.51 41128772 NA NA NA NA
AFG Asia Afghanistan 2020-01-10 0 0 0 0 0 0 0 0 0 0 0 0 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0 54.42 18.6 2.58 1.34 1803.99 NA 597.03 9.59 NA NA 37.75 0.5 64.83 0.51 41128772 NA NA NA NA
AFG Asia Afghanistan 2020-01-11 0 0 0 0 0 0 0 0 0 0 0 0 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0 54.42 18.6 2.58 1.34 1803.99 NA 597.03 9.59 NA NA 37.75 0.5 64.83 0.51 41128772 NA NA NA NA
AFG Asia Afghanistan 2020-01-12 0 0 0 0 0 0 0 0 0 0 0 0 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0 54.42 18.6 2.58 1.34 1803.99 NA 597.03 9.59 NA NA 37.75 0.5 64.83 0.51 41128772 NA NA NA NA
AFG Asia Afghanistan 2020-01-13 0 0 0 0 0 0 0 0 0 0 0 0 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0 54.42 18.6 2.58 1.34 1803.99 NA 597.03 9.59 NA NA 37.75 0.5 64.83 0.51 41128772 NA NA NA NA
AFG Asia Afghanistan 2020-01-14 0 0 0 0 0 0 0 0 0 0 0 0 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0 54.42 18.6 2.58 1.34 1803.99 NA 597.03 9.59 NA NA 37.75 0.5 64.83 0.51 41128772 NA NA NA NA

Covid data US-counties del NY TIMES

  1. US_Counties.csv.

Los datos provienen del siguiente repositorio, https://github.com/nytimes/covid-19-data.

Puede bajar los datos más reciente en el siguiente enlace. https://github.com/nytimes/covid-19-data/blob/master/us-counties.csv

El archivo tiene la siguiente información

  • Al momento de buscar los datos habia 735,516 lineas de datos
  • date = La fecha de los más recientes datos de COVID-19
  • el nombre del county/municipio
  • el estado/colonia (incluye a Puerto Rico)
  • FIPS = El código numérico de cada county/municipio. Para buscar información sobre el numero para cada country o municipio puede ir al siguiente enlace. https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/home/?cid=nrcs143_013697
  • cases = Números de casos cumulativo de este county/municipio
  • death = Números de casos de mortandad de este county/municipio
library(readr)
library(janitor)
us_counties <- read_csv("COVID_DATA/us_counties.csv")
us_counties=clean_names(us_counties)
names(us_counties)
## [1] "list_num" "date"     "county"   "us_state" "fips"     "cases"    "deaths"
unique(us_counties$us_state)
##  [1] "Washington"               "Illinois"                
##  [3] "California"               "Arizona"                 
##  [5] "Massachusetts"            "Wisconsin"               
##  [7] "Texas"                    "Nebraska"                
##  [9] "Utah"                     "Oregon"                  
## [11] "Florida"                  "New York"                
## [13] "Rhode Island"             "Georgia"                 
## [15] "New Hampshire"            "North Carolina"          
## [17] "New Jersey"               "Colorado"                
## [19] "Maryland"                 "Nevada"                  
## [21] "Tennessee"                "Hawaii"                  
## [23] "Indiana"                  "Kentucky"                
## [25] "Minnesota"                "Oklahoma"                
## [27] "Pennsylvania"             "South Carolina"          
## [29] "District of Columbia"     "Kansas"                  
## [31] "Missouri"                 "Vermont"                 
## [33] "Virginia"                 "Connecticut"             
## [35] "Iowa"                     "Louisiana"               
## [37] "Ohio"                     "Michigan"                
## [39] "South Dakota"             "Arkansas"                
## [41] "Delaware"                 "Mississippi"             
## [43] "New Mexico"               "North Dakota"            
## [45] "Wyoming"                  "Alaska"                  
## [47] "Maine"                    "Alabama"                 
## [49] "Idaho"                    "Montana"                 
## [51] "Puerto Rico"              "Virgin Islands"          
## [53] "Guam"                     "West Virginia"           
## [55] "Northern Mariana Islands"
df=us_counties %>%
  dplyr::filter(us_state == "Louisiana") %>% 
  tail(n=6)

df |> 
  gt() %>%
   tab_options(table.font.size = 10)
list_num date county us_state fips cases deaths
733449 11/15/20 Washington Louisiana 22117 2053 74
733450 11/15/20 Webster Louisiana 22119 1689 47
733451 11/15/20 West Baton Rouge Louisiana 22121 1156 43
733452 11/15/20 West Carroll Louisiana 22123 457 18
733453 11/15/20 West Feliciana Louisiana 22125 768 25
733454 11/15/20 Winn Louisiana 22127 846 22

COVID-19 data de Havard University

  1. Covid cases by person en Puerto Rico.

Datos proviene del siguiente enlace. Siempre puede ir a este enlace para tener los datos más reciente. Proviene de Harvard University https://rconnect.dfci.harvard.edu/covidpr/

En este archivo hay 904,610 filas de datos de personas que fueron evaluados para COVID-19 con pruebas moleculares.

Cuidado que datos que no son de gente en Puerto Rico, pudiese ser turistas o Puertoriqueños de visitas.

pruebas_2020_11_17_19_44_11 <- read_csv("COVID_DATA/pruebas-2020-11-17_19_44_11.csv")
Harvard=pruebas_2020_11_17_19_44_11
length(Harvard$testType)
## [1] 904610
#head(Harvard)

Aqui estan los nombres de las variables

  • collectedDate = La fecha de recvolección de la muestra
  • reportedDate = La fecha que se reporto el resultado
  • ageRange = El rango de edad de la persona
  • testType = El tipo de prueba, en este caso son todas Moleculares, En el Website puede conseguir los datos que son Anrigeno o Serologica
  • result = si la persona fue positiva “positive” o negativa “negative”, o other (“no claro el resultado”)
  • patientCity = La ciudad de residencia del paciente
  • createdAt = La fecha y hora de la muestra
  • date = La fecha de la muestra
names(Harvard)
## [1] "collectedDate" "reportedDate"  "ageRange"      "testType"     
## [5] "result"        "patientCity"   "createdAt"     "date"
unique(Harvard$result)
## [1] "negative" "positive" "other"
df=Harvard%>%
  tail( n=6)%>%
  gt()%>%
   tab_options(table.font.size = 10)
df
collectedDate reportedDate ageRange testType result patientCity createdAt date
2020-11-17 2020-11-17 20 to 29 Molecular negative Ciales 2020-11-17 14:30:00 2020-11-17
2020-11-17 2020-11-17 40 to 49 Molecular negative Trujillo Alto 2020-11-17 12:16:00 2020-11-17
2020-11-17 2020-11-17 50 to 59 Molecular positive Vega Alta 2020-11-17 07:22:00 2020-11-17
2020-11-17 2020-11-17 50 to 59 Molecular negative Moca 2020-11-17 16:54:00 2020-11-17
2020-11-17 2020-11-17 60 to 69 Molecular negative San Juan 2020-11-17 12:29:00 2020-11-17
2020-11-17 2020-11-17 70 to 79 Molecular negative San Germán 2020-11-17 08:02:00 2020-11-17

https://rconnect.dfci.harvard.edu/covidpr/

https://covidtracking.com/data/state/puerto-rico