Usando los datos de COVID-19
library(data.table)
mydat<- read.csv('https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/owid-covid-data.csv')
#write.csv(mydat, "COVID19_world.csv")
gt(tail(mydat, n=4))
iso_code | continent | location | date | total_cases | new_cases | new_cases_smoothed | total_deaths | new_deaths | new_deaths_smoothed | total_cases_per_million | new_cases_per_million | new_cases_smoothed_per_million | total_deaths_per_million | new_deaths_per_million | new_deaths_smoothed_per_million | reproduction_rate | icu_patients | icu_patients_per_million | hosp_patients | hosp_patients_per_million | weekly_icu_admissions | weekly_icu_admissions_per_million | weekly_hosp_admissions | weekly_hosp_admissions_per_million | total_tests | new_tests | total_tests_per_thousand | new_tests_per_thousand | new_tests_smoothed | new_tests_smoothed_per_thousand | positive_rate | tests_per_case | tests_units | total_vaccinations | people_vaccinated | people_fully_vaccinated | total_boosters | new_vaccinations | new_vaccinations_smoothed | total_vaccinations_per_hundred | people_vaccinated_per_hundred | people_fully_vaccinated_per_hundred | total_boosters_per_hundred | new_vaccinations_smoothed_per_million | new_people_vaccinated_smoothed | new_people_vaccinated_smoothed_per_hundred | stringency_index | population_density | median_age | aged_65_older | aged_70_older | gdp_per_capita | extreme_poverty | cardiovasc_death_rate | diabetes_prevalence | female_smokers | male_smokers | handwashing_facilities | hospital_beds_per_thousand | life_expectancy | human_development_index | population | excess_mortality_cumulative_absolute | excess_mortality_cumulative | excess_mortality | excess_mortality_cumulative_per_million |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ZWE | Africa | Zimbabwe | 2024-08-01 | 266386 | 0 | 0 | 5740 | 0 | 0 | 16577.57 | 0 | 0 | 357.21 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 42.73 | 19.6 | 2.82 | 1.88 | 1899.78 | 21.4 | 307.85 | 1.82 | 1.6 | 30.7 | 36.79 | 1.7 | 61.49 | 0.57 | 16320539 | NA | NA | NA | NA | |
ZWE | Africa | Zimbabwe | 2024-08-02 | 266386 | 0 | 0 | 5740 | 0 | 0 | 16577.57 | 0 | 0 | 357.21 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 42.73 | 19.6 | 2.82 | 1.88 | 1899.78 | 21.4 | 307.85 | 1.82 | 1.6 | 30.7 | 36.79 | 1.7 | 61.49 | 0.57 | 16320539 | NA | NA | NA | NA | |
ZWE | Africa | Zimbabwe | 2024-08-03 | 266386 | 0 | 0 | 5740 | 0 | 0 | 16577.57 | 0 | 0 | 357.21 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 42.73 | 19.6 | 2.82 | 1.88 | 1899.78 | 21.4 | 307.85 | 1.82 | 1.6 | 30.7 | 36.79 | 1.7 | 61.49 | 0.57 | 16320539 | NA | NA | NA | NA | |
ZWE | Africa | Zimbabwe | 2024-08-04 | 266386 | 0 | 0 | 5740 | 0 | 0 | 16577.57 | 0 | 0 | 357.21 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 42.73 | 19.6 | 2.82 | 1.88 | 1899.78 | 21.4 | 307.85 | 1.82 | 1.6 | 30.7 | 36.79 | 1.7 | 61.49 | 0.57 | 16320539 | NA | NA | NA | NA |
## [1] "Afghanistan" "Africa"
## [3] "Albania" "Algeria"
## [5] "American Samoa" "Andorra"
## [7] "Angola" "Anguilla"
## [9] "Antigua and Barbuda" "Argentina"
## [11] "Armenia" "Aruba"
## [13] "Asia" "Australia"
## [15] "Austria" "Azerbaijan"
## [17] "Bahamas" "Bahrain"
## [19] "Bangladesh" "Barbados"
## [21] "Belarus" "Belgium"
## [23] "Belize" "Benin"
## [25] "Bermuda" "Bhutan"
## [27] "Bolivia" "Bonaire Sint Eustatius and Saba"
## [29] "Bosnia and Herzegovina" "Botswana"
## [31] "Brazil" "British Virgin Islands"
## [33] "Brunei" "Bulgaria"
## [35] "Burkina Faso" "Burundi"
## [37] "Cambodia" "Cameroon"
## [39] "Canada" "Cape Verde"
## [41] "Cayman Islands" "Central African Republic"
## [43] "Chad" "Chile"
## [45] "China" "Colombia"
## [47] "Comoros" "Congo"
## [49] "Cook Islands" "Costa Rica"
## [51] "Cote d'Ivoire" "Croatia"
## [53] "Cuba" "Curacao"
## [55] "Cyprus" "Czechia"
## [57] "Democratic Republic of Congo" "Denmark"
## [59] "Djibouti" "Dominica"
## [61] "Dominican Republic" "East Timor"
## [63] "Ecuador" "Egypt"
## [65] "El Salvador" "England"
## [67] "Equatorial Guinea" "Eritrea"
## [69] "Estonia" "Eswatini"
## [71] "Ethiopia" "Europe"
## [73] "European Union (27)" "Faroe Islands"
## [75] "Falkland Islands" "Fiji"
## [77] "Finland" "France"
## [79] "French Guiana" "French Polynesia"
## [81] "Gabon" "Gambia"
## [83] "Georgia" "Germany"
## [85] "Ghana" "Gibraltar"
## [87] "Greece" "Greenland"
## [89] "Grenada" "Guadeloupe"
## [91] "Guam" "Guatemala"
## [93] "Guernsey" "Guinea"
## [95] "Guinea-Bissau" "Guyana"
## [97] "Haiti" "High-income countries"
## [99] "Honduras" "Hong Kong"
## [101] "Hungary" "Iceland"
## [103] "India" "Indonesia"
## [105] "Iran" "Iraq"
## [107] "Ireland" "Isle of Man"
## [109] "Israel" "Italy"
## [111] "Jamaica" "Japan"
## [113] "Jersey" "Jordan"
## [115] "Kazakhstan" "Kenya"
## [117] "Kiribati" "Kosovo"
## [119] "Kuwait" "Kyrgyzstan"
## [121] "Laos" "Latvia"
## [123] "Lebanon" "Lesotho"
## [125] "Liberia" "Libya"
## [127] "Liechtenstein" "Lithuania"
## [129] "Low-income countries" "Lower-middle-income countries"
## [131] "Luxembourg" "Macao"
## [133] "Madagascar" "Malawi"
## [135] "Malaysia" "Maldives"
## [137] "Mali" "Malta"
## [139] "Marshall Islands" "Martinique"
## [141] "Mauritania" "Mauritius"
## [143] "Mayotte" "Mexico"
## [145] "Micronesia (country)" "Moldova"
## [147] "Monaco" "Mongolia"
## [149] "Montenegro" "Montserrat"
## [151] "Morocco" "Mozambique"
## [153] "Myanmar" "Namibia"
## [155] "Nauru" "Nepal"
## [157] "Netherlands" "New Caledonia"
## [159] "New Zealand" "Nicaragua"
## [161] "Niger" "Nigeria"
## [163] "Niue" "North America"
## [165] "North Korea" "North Macedonia"
## [167] "Northern Cyprus" "Northern Ireland"
## [169] "Northern Mariana Islands" "Norway"
## [171] "Oceania" "Oman"
## [173] "Pakistan" "Palau"
## [175] "Palestine" "Panama"
## [177] "Papua New Guinea" "Paraguay"
## [179] "Peru" "Philippines"
## [181] "Pitcairn" "Poland"
## [183] "Portugal" "Puerto Rico"
## [185] "Qatar" "Reunion"
## [187] "Romania" "Russia"
## [189] "Rwanda" "Saint Barthelemy"
## [191] "Saint Helena" "Saint Kitts and Nevis"
## [193] "Saint Lucia" "Saint Martin (French part)"
## [195] "Saint Pierre and Miquelon" "Saint Vincent and the Grenadines"
## [197] "Samoa" "San Marino"
## [199] "Sao Tome and Principe" "Saudi Arabia"
## [201] "Scotland" "Senegal"
## [203] "Serbia" "Seychelles"
## [205] "Sierra Leone" "Singapore"
## [207] "Sint Maarten (Dutch part)" "Slovakia"
## [209] "Slovenia" "Solomon Islands"
## [211] "Somalia" "South Africa"
## [213] "South America" "South Korea"
## [215] "South Sudan" "Spain"
## [217] "Sri Lanka" "Sudan"
## [219] "Suriname" "Sweden"
## [221] "Switzerland" "Syria"
## [223] "Taiwan" "Tajikistan"
## [225] "Tanzania" "Thailand"
## [227] "Togo" "Tokelau"
## [229] "Tonga" "Trinidad and Tobago"
## [231] "Tunisia" "Turkey"
## [233] "Turkmenistan" "Turks and Caicos Islands"
## [235] "Tuvalu" "Uganda"
## [237] "Ukraine" "United Arab Emirates"
## [239] "United Kingdom" "United States"
## [241] "United States Virgin Islands" "Upper-middle-income countries"
## [243] "Uruguay" "Uzbekistan"
## [245] "Vanuatu" "Vatican"
## [247] "Venezuela" "Vietnam"
## [249] "Wales" "Wallis and Futuna"
## [251] "Western Sahara" "World"
## [253] "Yemen" "Zambia"
## [255] "Zimbabwe"
5 puntos
5 puntos
3 puntos
Selecciona cinco países pequeños del Caribe y reproduzca la gráfica anterior. Para que la gráfica se puede apreciar tendrán que usar los países con poblaciones más pequeño.